Answers!

<u>DIRECTIONS</u>: For #1-4, use the following equation to answer the questions.

$$y + 5 = 4(x - 2)^2$$

1.	What is the vertex ?	(2, -5)
2.	What is the axis of symmetry ?	<i>x</i> = 2
3.	Does the parabola open UP or DOWN?	UP

4. Is the shape, NARROWER, WIDER, or the SAME WIDTH as $y = x^2$? NARROWER

<u>DIRECTIONS</u>: For #5-9, use the following equation to answer the questions.

$$y - 3 = -\frac{1}{2}(x + 1)^2$$

5. What is the maximum/minimum value?36. Is this value a MAXIMUM or a MINIMUM?MAXIMUM7. What is the domain?all real numbers8. What is the range?
$$y \le 3$$
9. What are the zeros? $-1 \pm \sqrt{6}$

<u>DIRECTIONS</u>: For #10, graph the given equation. Be sure to include the axis of symmetry and as many points as possible.

10. $y - 8 = -2(x + 2)^2$

<u>DIRECTIONS</u>: For #11-14, write the functions in **vertex form** $\rightarrow y - k = a(x - h)^2$

11.
$$f(x) = x^2 - 6x + 16$$
 $y - 7 = (x - 3)^2$

12.
$$f(x) = -4(x-5)^2 - 3$$

 $y + 3 = -4(x-5)^2$

13.
$$g(x) = 2x^2 + 10x + 17$$
 $y - \frac{9}{2} = 2(x + \frac{5}{2})^2$

14.
$$h(x) = 20x - 5x^2$$
 $y - 20 = -5(x - 2)^2$

<u>DIRECTIONS</u>: For #15-21, use the following function to answer the questions.

$$f(x) = 5 - 6x - x^2$$

15. What is this function in vertex form?	$y - 14 = -(x + 3)^2$
16. What is the vertex ?	(-3, 14)
17. What is the axis of symmetry?	x = -3
18. What is the maximum/minimum value ?	14
19. Is this value a MAXIMUM or a MINIMUM?	MAXIMUM
20. What is the range?	<i>y</i> ≤ 14
21. What are the zeros ?	$-3\pm\sqrt{14}$

<u>DIRECTIONS</u>: For #22-23, descriptions of parabolas are provided. Write equations for each in **vertex form** $\rightarrow y - k = a(x - h)^2$

22. Vertex (3, -9) and contains the point (-1, 55) $y + 9 = 4(x - 3)^2$

23. Vertex (-6, -7) and *y*-intercept is -61
$$y + 7 = -\frac{3}{2}(x+6)^2$$

<u>DIRECTIONS</u>: For #24-26, write quadratic equations $(ax^2 + bx + c = 0)$ with integer coefficients for the given roots.

24. Roots are -5 and 3	$x^2 + 2x - 15 = 0$
-----------------------------------	---------------------

25. Roots are
$$7 + i$$
 and $7 - i$ $x^2 - 14x + 50 = 0$

26. Roots are
$$\frac{3+\sqrt{5}}{4}$$
 and $\frac{3-\sqrt{5}}{4}$ **4**

<u>DIRECTIONS</u>: For #27, a description of a parabola is provided. Write a quadratic function $\rightarrow f(x) = ax^2 + bx + c$

27. Minimum value of -8; *x*-intercepts are 1 and 5 $f(x) = 2x^2 - 12x + 10$

<u>DIRECTIONS</u>: For #28, solve and show work (to prove your answer is correct). Write your answer in the provided blank.

28. A rectangular plot is to be enclosed on three sides with 200 meters of fencing. The fourth side is up against a barn and does not require a fence. Find the maximum area that can be enclosed.

5000 m²